

CAT® G3500

SMARTER SINGS SING

COMMERCIAL AND INDUSTRIAL FACILITIES

Facilities such as manufacturing plants, resorts, shopping centers, office or residential buildings, universities, data centers and hospitals reduce operating costs and carbon footprint simultaneously.

ELECTRIC UTILITIES

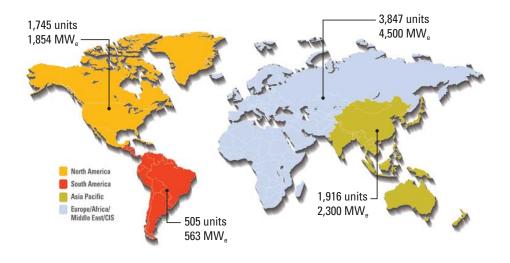
Caterpillar has led innovation to deliver stationary and containerized gas power plants to electric utilities and district energy facilities around the world for both continuous grid support and peak electricity demand.

MINES

Mining operators increase mine safety and reduce carbon emissions with coal gas, while many other mining operations are realizing the benefits of onsite gas power generation to support greenfield site development.

AGRICULTURE AND FOOD / BEVERAGE PROCESSING

Biogas, a useful byproduct of the anaerobic digestion of organic waste, is created by food processors, ethanol and biodiesel manufacturers, and farms around the world as a renewable fuel resource for Cat® powered electricity generation.


LANDFILLS AND WASTEWATER TREATMENT PLANTS

Landfill and sewage gases are generated by communities around the world as part of sanitary process infrastructure. Instead of destroying or flaring the methane gas produced, communities make beneficial use of this fuel as part of a sustainable energy program.

GREENHOUSES

In greenhouses, Cat gas generator sets simultaneously deliver electricity for lighting or sale to the local grid, hot water for facility heating and carbon dioxide as an organic fertilizer for increased crop production.

Installed capacity of 9,217 MW_e with 8,013 generator sets worldwide

MEETING YOUR NEEDS HAS SHAPED OUR HISTORY

At Caterpillar, we understand what it takes to deliver a successful gas power generation system, and it starts with a core machine that is designed for efficiency and reliability. Since the 1920s, Caterpillar has been designing and building engines for power production. Although the technology has changed over the years, the philosophy hasn't: to deliver the most reliable power generation at the lowest possible cost of ownership and operation. Today, Caterpillar not only manufactures power generation equipment, but we also provide customized project financing via Cat Financial.

THE COMPLETE SOLUTION

Caterpillar is your complete gas solutions partner. From mechanical systems such as gas fuel train and heat recovery systems, to exhaust aftertreatment that complies with the world's most stringent emission requirements, Caterpillar Gas Solutions engineering works with your local Cat dealer to deliver a complete scope of supply. Caterpillar also provides electrical systems such as master controls and paralleling switchgear, electrical distribution switchgear and uninterruptible power supplies (UPS) that can meet either UL or IEC requirements.

PRODUCT SUPPORT WORLDWIDE

Your gas power system is supported by our factory trained global network of Cat dealers. Therefore, you can rest assured that your equipment will be ordered, delivered, installed and commissioned in consultation with a local expert. You'll also have the confidence that Caterpillar will be there to keep you up and running. Cat dealers have over 1,600 dealer branch stores operating in 200 countries to provide the most extensive post-sales support including oil and fuel monitoring services, preventive maintenance and comprehensive Customer Support Agreements.

LOWER LIFE CYCLE COST

With longer maintenance intervals, higher fuel efficiency and competitive repair options, Caterpillar delivers the lowest total owning and operating costs. When you design your facility within Caterpillar's Application and Installation Guidelines, you can expect generator set availability up to 99 percent of planned operating hours annually. It all adds up to a strong return on your investment, year after year.

HIGHLY EFFICIENT PERFORMANCE

PRINCETON UNIVERSITY

PRINCETON, NEW JERSEY, USA

In 2011, Caterpillar delivered a G3520E 60 Hz gas generator set rated to 2,000 kW_{el} designed for waste heat recovery to support campus-wide energy efficiency goals at this prestigious Ivy League school.

HBG-HEIZWERKBETRIEBSGESELLSCHAFT

REUTLINGEN, GERMANY

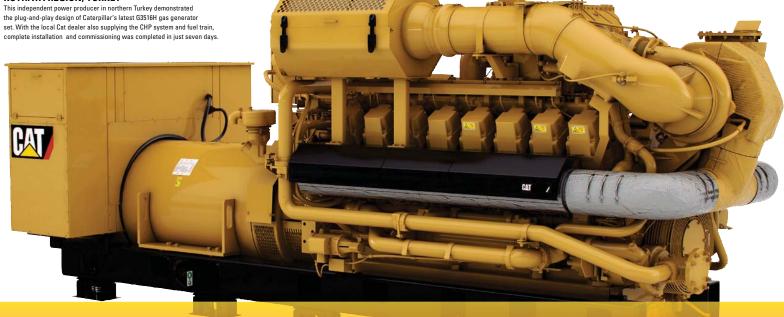
This district power and heating plant had been operating Cat G3520C generator sets at total system efficiency near 100 percent based on condensing heat exchangers and industrial heat pumps. When a new plant was commissioned in 2012 with a next generation G3516H, the plant manager declared it "the easiest genset startup we've seen."

KUTHAYA REGION, TURKEY

the plug-and-play design of Caterpillar's latest G3516H gas generator set. With the local Cat dealer also supplying the CHP system and fuel train,

HIGHLY EFFICIENT

The E & H Series takes electrical efficiency to the next level, up to 44.7 percent (1.0PF, ISO). Improved performance is delivered via a combination of new piston ring liner packs, optimized turbochargers, updated controls, crankcase recirculation system and low-loss steel generator construction.


CUSTOM ENGINEERED TO CUSTOMER SPECS

Whether your goals are achieving the lowest fuel consumption, lowest emissions, high load response, or just surviving challenging high ambient conditions, the E & H Series offers tailored turbochargers, air systems and controls that are matched to your performance requirements.

LOWEST MAINTENANCE COSTS

The E & H Series consumes U.S. \$14,000 less oil per year than competitive engines, achieving a mid-life oil consumption below 182 mg/kWm-h (0.0003 lb/bhp-h). Major planned overhauls up to 80,000 hours ensure the lowest possible long-term owning and operating costs.

JINCHENG COAL MINING GROUP LTD.

JINCHENG, SHANXI, CHINA

The largest coal-mine-methane fueled power plant in the world employs 60 Cat G3520C generator sets to divert harmful coal gas from entering the atmosphere while generating cost-effective electricity for over a half million Chinese homes.

BIFFA POPLARS LANDFILL

CANNOCK, UNITED KINGDOM

A power expansion of 4 MW was made possible with two landfill powered 63520C generators sets in custom outdoor enclosures. Engine heat is recovered for leachate treatment and the entire system can be operated remotely.

WENTWORTH RESOURCES

MNAZI BAY & MTWARA, TANZANIA

Local natural gas resources fuel nine G3520C generator sets to provide the area's first reliable utility power source, resulting in economic prosperity never before experienced by the local community.

HARDENED AGAINS

Since 2005, the C Series has become the industry leader for operation on landfill gas, agricultural biogas and sewage gas fuels. Specially treated aftercooler cores, cylinder heads and rear gear train bearings are hardened against corrosive biogas elements. Elevated jacket water temperatures and crankcase ventilation discourage harmful acidic condensation.

BEST-IN-CLASS LOAD RESPONSE

The island mode version of the C Series generator sets provide the best option in the industry for efficient operation disconnected from the utility grid thanks to a specialized controls architecture. When block loads are applied up to 25 percent of nameplate rating, the generator set recovers to nominal frequency and voltage within 10 seconds (ISO8528-5 Class G1).

SPECIAL PROJECT CAPABILITY

Caterpillar is investing in research and development programs on the C Series platform that allow for operation on specialty fuels such as syngas, blast furnace gas, coke oven gas and ultra-low methane coal gas.

BALANCED AND ADAPTABLE

BOGORODSKOE INDUSTRIES LLC BOGORODSKOE, RUSSIA

With only four months to transport and construct a complete heat and power facility to support the city of Bogorodskoe, Caterpillar and local dealer Amur Marchinery commissioned three G3516B generator sets in arctic grade enclosures with a heat recovery system that delivers 90 percent system efficiency.

SIEMENS BUILDING TECHNOLOGIES

MILFORD, MASSACHUSETTS, USA

Monroe County saves \$1 million per year in energy costs by implementing four Cat G3516B in a trigeneration scheme that produces 5.4 MW of electricity along with hot water and summer cooling for the Monroe County Community College.

FINNING RENTAL POWER EDMONTON, ALBERTA, CANADA

Finning Rental Power is the largest provider of Cat gas rental power services in North America. Their fleet includes over 20 Cat X012500 power modules using 63516B generator sets that deliver temporary power to industrial, commercial and petroleum projects across Western Canada.

A TECHNOLOGY FIRST

The G3500B Series was the first Cat gas generator set to introduce several technologies: fully electronic control, automated air fuel ratio adjustment, pre-chamber spark plugs, transient richening with turbo bypass and individual cylinder detonation control.

ADAPTABLE

With standard natural gas configurations designed to handle Cat methane numbers down to 60 MN, the B Series is particularly adept at handling pipeline fuels that experience seasonal variability. Recent updates allow for high efficiency operation on lower MN fuels such as propane.

A FIRST IN MOBILITY

The G3516B generator set was the first lean burn gas generator set in the world to be offered as a fully mobile, containerized power plant. The X01250G rental module was introduced in 2004, and updated in 2010 to include updated generator set and utility paralleling controls, improved fuel train and lower exhaust emissions.

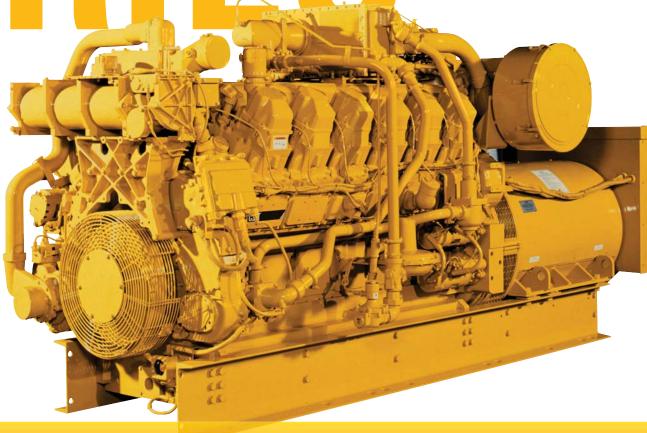
HANGZHOU MUNICIPAL SOLID WASTE TREATMENT COMPANY LTD.

HANGZHOU, ZHEJIANG, CHINA

To power the first major landfill-gas-to-energy project in China, the local authorities selected two G3516A landfill gas generator sets. After 10 years and 80,000 hours of successful operation without a major overhaul, in 2011 Caterpillar was again selected to provide two more G3516A generator sets for an expansion site.

ENERDYNE POWER SYSTEMS

ALCOA, TENNESSEE, USA


To maximize the 1 MW of renewable energy allowed for export to the local grid, in 2011 Caterpillar delivered a unique GS164B, gas generator set in a custom outdoor enclosure, with a custom gear train, and low NO₄ setting that allowed the customer to operate at maximum power for maximum profit.

ENGINE DEVELOPMENTS LTD., APPIN COAL MINE

NEW SOUTH WALES, AUSTRALIA

In 1995, 94 G3516A coal gas generator sets were commissioned to provide a first-of-a-kind in sustainable energy: electricity from underground coal gas. In 2012, after many engines reached 100,000 operating hours without a major overhaul, power plant owner-operator EDL extended their power contract for four more years.

AN INDUSTRY WORKHORSE FOR 25 YEARS

ULTIMATE RELIABILIT

With over 10,000 gas engine generators sold over the past 25 years, the G3500A Series is a proven performer in hundreds of different applications. With unparalleled uptime and ease of maintenance, consultants around the world continue to specify the A Series for its reliability.

THERMAL EFFICIENCY

No other gas generator set on the market can deliver the same diversity of heat for combined heat and power applications. The A Series can utilize up to a 127°C (260°F) jacket water circuit to deliver 15 psi (1 bar) steam while also providing 145 psi (10 bar) steam wia exhaust heat recovery.

C₁ H₄

FUEL FLEXIBILITY

Whether your fuel is coal gas, landfill gas, propane, LNG, agricultural biogas, or associated gas, the A Series has a configuration specifically designed to handle a variety of fuels and applications. This flexibility also extends to extreme ambient conditions and altitudes without derate or risk of detonation.

50HZ PRODUCT PERFORM	MANCE: E	BIOGAS											
PHYSICAL DATA	UN	IITS	G35	08A	G35	512A	G35	16A	G35	I6A+	G35	20C	
Bore / Stroke	mm	in	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	
Displacement	I	in³	35.0 2105		52.0 3158		69.0	69.0 4210		4210	86.0	5266	
Engine Speed	rı	om	15	00	15	500	15	i00	15	00	15	00	
Length 1)	mm	in	3674 145		4333 171		4906	193	4906	193	6316	249	
Width 1)	mm in		2156 85		2160 85		2155 85		2155	85	1828	72	
Height 1)	mm in		2126 84		2063	81	2051	2051 81		82	2254	89	
Dry weight genset	kg	lb	7,642	16,850	9,161	20,201	17,824	39,303	17,778	39,200	17,826	39,306	
PERFORMANCE	UN	IITS	G3508A		G35	512A	G35	16A	G35	I6A+	G35	20C	
Emission setting (NO _x)*	mg/m _n ³	g/bhp-h	500	1	500	1	500	1	500	1	500	1	
Electrical power 2)	k'	W _e	4	57	7	77	10	141	11	05	19	91	
Mean effective pressure	bar	psi	12.4	180	12.4	180	12.4	180	13.2	191	18.9	274	
Thermal output 3)	kW _{th}	Btu/m	716	40,726	1,310	74,480	1,556	88,475	1,245	70,803	2,323	132,098	
Electrical efficiency 2)	%		30.1		3	0.8	32	2.1	36	5.8	39	1.3	
Thermal efficiency 3)	%		49	9.3	5	2.7	47	7.0	4	1.5	44	1.7	
Total efficiency	%		79.4		8	3.5	79	9.1	78	3.3	84.0		
Cat Ref. #			DTO / I	DM3166	DTO /	DM0762	516GE87 /	DM0761-03	DTO/S	02-35-03	520GE37 / DM8647-03		

60HZ PRODUCT PERFORM	MANCE: E	BIOGAS												
PHYSICAL DATA	UN	ITS	G35	08A	G35	i12A	G35	16A	G35	16A+	G35	520C	G35	20C
Bore / Stroke	mm	in	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5
Displacement	I	in³	35.0	2105	52.0 3158		69.0	4210	69.0	4210	86.0	5266	86.0	5266
Engine Speed	rţ	om	12	00	12	200	12	100	12	200	12	200	15	00
Length 1)	mm	in	3944	155	3944 155		4320	170	4913	193	6322	249	7557	298
Width 1)	mm in		1736 68		1736 68		2284 90		1736 68		1803	71	2170	85
Height 1)	mm in		2007 79		2126 84		1940	76	1940	76	2465 97		3212	126
Dry weight genset	kg	lb	7,619	16,800	9,161	20,201	12,549	27,670	12,549	27,670	17,339	38,232	22,425	49,447
PERFORMANCE	UN	ITS	G3508A		G3512A		G35	16A	G35°	16A+	G35	520C	G35	20C
Emission setting (NO _x)*	mg/m _n ³	g/bhp-h	859	2	759	2	787	2	500	1	439	1	500	1
Electrical power 2)	k\	N _e	40	08	6	15	8	24	10	115	16	522	19	36
Mean effective pressure	bar	psi	12.4	180	12.4	180	12.4	180	15.2	221	19.4	281	18.9	274
Thermal output 3)	kW _{th}	Btu/m	592	33,640	1,018	57,920	1,266	71,985	1,145	65,125	1,665	94,704	2,322	132,049
Electrical efficiency 2)	%		32	2.2	2	9.6	3	1.0	36	6.1	39	9.8	38	.7
Thermal efficiency 3)	%		45.8		4	3.1	4	7.6	39	9.9	39	9.9	44	.7
Total efficiency	(%	78	3.0	7	7.7	78	3.6	76	6.0	79	9.6	83	.3
Cat Ref. #			DTO / E	M8672	DTO / DI	VI8651-00	516GE71 /	DM5480-00	DTO / WG1	2-3500-9(02)	520GE38 /	DM5859-05	520GE38 /	DM8647-03

Notes

1) Transport dimensions of genset only, Accessory components must be taken into account separately,
2) Series (A, B, C-60Hz, C-50Hz-Biogas) include losses for engine-mounted JW & AC mechanical coolant pumps. Series (C-50Hz-Natural Gas, E, & H) excude engine-mounted JW & AC pumps. In accordance with SiO 3046/1 using standard low voltage (medium voltage for > 2000W) generator at FP-1.0. Assumes methane number of MNBI for natural gas, MN 130 for biogas.
3) In accordance with nointal obterances. Calculated as exhaust gas heat ocoled to 120°C) byte sengine jacket variet criciat heat.

* NO, emissions as NO, dry exhaust gas 69 5% 0, with 5°C (130°F) SCAC insist temperature (48°C (110°F) for H Series). < 500 mg/m. (1.0g/bhp-h) NO, performance available via engine setting for learn burn engines or variety advances available via engine setting for learn burn engines or variety. Survey of the control of the con

50HZ PRODUCT	PERF	ORM/	NCE:	NATUI	RAL G	AS																		
PHYSICAL DATA		NITS		08A		12A	G35	16A	G35	12E	G35	G3516B		12E	G351	6E**	G35	16C	G3	520C	G35	516H	G35	520E
Bore / Stroke	mm	in	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 215	6.7 / 8.5	170 / 190	6.7 / 7.
Displacement	- 1	in³	33.0	2015	52.0	3158	69.0	4210	52.0	3158	69.0	4210	52.0	3158	69.0	4210	69.0	4210	86.0	5266	78.0	4765	86.0	5248
Engine Speed	rpm 1500		15	00	15	00	15	00	1500		1500		1500		15	00	1	500	15	500	15	500		
Length 1)	mm	in	3581	141	4332	171	4909	193	4625	182	4848	191	4594	181	5523	217	5553	219	6259	246	5979	235	6893	271
Width 1)	mm	in	1570	62	2160	85	2197	86	1828	72	2091	82	1647	65	1828	72	1828	72	1828	72	1921	76	2001	79
Height 1)	mm	in	2012	79	2063	81	2015	79	2255	89	2350	93	2255	89	2340	92	2340	92	2254	89	2307	91	2727	107
Dry weight genset	kg	lb	9,229	20,351	10,807	23,830	12,384	27,306	11,347	25,021	13,370	29,480	12,460	27,475	13,366	29,472	14,161	31,226	17,826	39,306	16,397	36,156	17,826	39,306
PERFORMANCE	UI	NITS	G35	08A	G35	12A	G35	16A	G35	12E	G35	16B	G3512E		G3516E**		G3516C		G3	520C	G3516H		G35	520E
Emission setting (NO _x)*	mg/m _n ³	g/bhp-h	500	1	500	1	834	2	500	1	500	1	500	1	500	1	500	1	500	1	500	1	500	1
Electrical power 2)	k	:W _e	4	35	77	17	98	33	10	17	10	188	12	11	16	03	16	05	2	019	20	027	20	39
Mean effective pressure	bar	psi	11.7	170	12.4	180	11.7	170	16.2	235	13.1	190	19.2	279	19.2	278	19.2	279	19.2	278	21.3	309	19.5	283
Thormal outnut 3)	L\\/	Ptu/m	622	25 01/	1 212	60 064	1 202	70 160	1 100	62 524	1 //02	97 926	1 226	60 727	1 62/	02 907	1 020	104 006	2 202	120 706	1 027	110 155	2 16/	122.056

I EIII OIIIVIAIVOL	OI.	1113	uss	UUA	UJJIZA		GOSTOA		GJJ1ZL		033100		UJJIZE		GJJI	UL	doo	100	us.	3200	doo	1011	uou	JZUL
Emission setting (NO _x)*	mg/m _n ³	g/bhp-h	500	1	500	500 1		834 2		500 1		1	500	1	500	1	500	1	500	1	500 1		500	1
Electrical power 2)	k	W _e	48	35	77	77	98	983		17	10	88	12	11	16	03	16	05	2019		2027		2039	
Mean effective pressure	bar	psi	11.7	170	12.4	12.4 180		170	16.2	235	13.1	190	19.2	279	19.2	278	19.2	279	19.2	278	21.3	309	19.5	283
Thermal output 3)	kW _{th}	Btu/m	632	35,914	1,213	68,964	1,392	79,169	1,100 62,534		1,492	84,826	1,226	69,727	1,634	92,897	1,830 104,096		2,282 129,786		1,937 110,155		2,164	123,056
Electrical efficiency 2)		%	37	.2	31	1.9	34.8		41	.5	37	7.1	42	2.2	41	.6	40).1	4	0.3	44	1.7	42	2.4
Thermal efficiency 3)		%	48	.5	48	3.8	48.3		43.7		49.9		41.8		41.4		44.6		4	4.5	41	1.3	44	4.0
Total efficiency		%	85	.7	80	80.7		83.0		85.2		87.1		84.0		83.0		1.7	8	4.8	86.0		86	6.4
Cat Ref. #			508GEX3 / I	DM5232-03	512GE04 /	DM0762-03	516GE88 / I	516GE88 / DM5158-02		DM8801-04	516GE83 / I	DM5641-01	512GE18 /	DM8811-04	516GE48 /	DM5790-02	516GE24 /	DM8678-04	520GE87/88 / EM0301-01		01 DTO / EM0500-00		//0500-00 520GE62 / DM8	
						· ·																		

60HZ PRODUCT	60HZ PRODUCT PERFORMANCE: NATURAL GAS																									
PHYSICAL DATA	UN	ITS	G35	08A	G35	08A	G35	12A	G35	512A	G35	16A	G35	16A	G35	16B	G35	20C	G3	516C	G351	6H**	G35	20E	G35	520C
Bore / Stroke	mm	in	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5	170 / 215	6.7 / 8.5	170 / 190	6.7 / 7.5	170 / 190	6.7 / 7.5
Displacement	l in³		0	0	33.0	2015	52.0	3158	52.0	3158	78.0	4210	69.0	4210	69.0	4210	86.0	5266	69.0	4210	78.0	4765	86.0	5248	86.0	5270
Engine Speed	rp	m	1200		1200		12	00	12	200	12	00	12	00	18	300	12	200	1	800	15	00	15	00	18	00
Length 1)	mm	in	3821	150	3821	150	4281	169	4281	169	3280	129	4913	193	4203	165	6312	249	5518	217	7395	291	7013	276	6367	251
Width 1)	mm	in	1570	62	1570	62	1736	68	1736	68	1712	67	1736	68	2155	85	1830	72	1830	72	2139	84	2032	80	1997	79
Height 1)	mm	in	2012	79	2012	79	1940	76	1940	76	1860	73	1940	76	2419	95	2340	92	2340	92	2402	95	2730	107	2340	92
Dry weight genset	kg	lb	7,393	16,301	7,393	16,301	10,807	23,830	10,807	23,830	12,549	27,670	12,549	27,670	12,618	27,823	17,339	38,232	13,748	30,315	18,315	40,384	21,454	47,306	17,215	37,959

PERFORMANCE	UN	IITS			G3508A		G3512A		G35	12A	G35	16A	G35	16A	G3516B		G3520C		G3516C		G3516H**		G3520E		G3520C	
Emission setting (NO _x)*	mg/m _n ³	g/bhp-h	9498	26	857	2	8399	21	844	2	9791	24	844	2	407	1	500	1	443	1	500	1	500	1	446	1
Electrical power 2)	kW _e		37	73	3	80	5	64	5	83	7	55	7	79	13	312	16	326	1	663	20	008	20)26	20	177
Mean effective pressure	bar psi		11.4	165	11.7	170	11.4	165	11.7	170	11.7	170.0	11.7	170	13.0	189	19.4	282	16.6	241	21.3	309	19.3	280	16.6	241
Thermal output 3)	kW _{th} Btu/m 5		591	33,616	441	25,097	961	54,629	779	44,293	1,146	65,178	1,087	61,819	1,817	103,314	1,749	99,449	2,100	119,412	1,937	110,155	2,164	123,056	2,627	149,402
Electrical efficiency 2)		% 32.7		2.7	34.4		32.5		34.5		33.0		3!	i.0	3	5.5	41).8	:	37.6	4	4.3	4:	2.2	38	3.0
Thermal efficiency 3)	%		51.8		39	9.2	55.2		45.2		49	9.1	48.8		4	8.3	42.8		46.4		4	1.3	44.0		46	6.9
Total efficiency		%	84	1.5	73	3.7	87	1.7	79	9.7	8:	2.1	83	3.7	8:	3.8	8	3.6	8	34.0	8	5.6	8	6.1	84	1.9
Cat Ref. #			508GE08 / DM5205-03		508GE09 / TM9729-04		512GE12 / DM5207-03		512GE13 /	12GE13 / DM0745-05 516GE67 / DM5663		516GE68 / DM0739-00 516GE86 / DM5495-04		520GE34 / DM0881-00		516GE75 / DM5784-01		DTO / EM0500-00		0-00 520GE62 / DM8916-		0 520GE10 / DM3194-0				

Notes

1) Transport dimensions of genset only. Accessory components must be taken into account separately.
2) Series (A. B., C-80Hz, C-50Hz-Biogast include losses for engine-mounted. JW & A.C. mechanical coolant pumps. Series (C-50Hz-Natural Gas, E, & HI exclude engine-mounted. JW & A.C. mechanical coolant pumps. In accordance with SIG 3046FI using standard low voltage (medium voltage for > 2000EWI) generator at FF-1.D. Assumes methane number of MN80 for natural gas, MN 130 for biogas.
3) In accordance with nominal teleprances. Calculated as exclusat gas have coded (to 1270°L) laws engine jacket variet criciat heat.

* NO, emissions as NO, dry exhaust gas @ 5% O, with 54°C (139°F) SCAC into temperature (48°C (118°F) for H Series), 4500 mg/m² (1.0g/bhp-h) NO, performance available via engine setting for the nature engines or via 3-way catalyst for rich burn engines. Ultra-low NO, options available via SCR catalyst.

***Orders available beginning Dec. 2013**

***Orders available beginning Dec. 2013**

***Incl. Mandfill nax. sevyace gas, disjecter gas) assumed to meet published engine-in contaminant limits with minimum heating value (LHV) = 18.0 MJ/m², (457 Btu/scf).

Bloas series use organize expansion (see, 2015) Bload Series (see a series of the seri

LEBE0023-00 February 2013

CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow," the "Power Edge" trade dress, as well as corporate and product identify used herein, are trademarks of Caterpillar and may not be used without permission. © 2013 Caterpillar, All Rights Reserved.

